Copied to
clipboard

G = C24.19D10order 320 = 26·5

19th non-split extension by C24 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.19D10, (D4×C10)⋊19C4, (C2×D4)⋊7Dic5, C206(C22⋊C4), (C2×Dic5)⋊12D4, C10.132(C4×D4), (C2×C20).191D4, C41(C23.D5), C2.19(D4×Dic5), (C22×D4).7D5, C2.4(C20⋊D4), C2.5(C202D4), C22.121(D4×D5), C10.36(C41D4), (C22×C4).353D10, C10.129(C4⋊D4), C23.10(C2×Dic5), C2.4(C20.17D4), C10.47(C4.4D4), (C23×C10).47C22, C55(C24.3C22), C23.306(C22×D5), C22.62(D42D5), (C22×C20).199C22, (C22×C10).366C23, C22.52(C22×Dic5), (C22×Dic5).220C22, (C2×C4×Dic5)⋊3C2, (D4×C2×C10).5C2, (C2×C4⋊Dic5)⋊35C2, (C2×C20).291(C2×C4), (C2×C10).555(C2×D4), (C2×C23.D5)⋊10C2, (C2×C4).50(C2×Dic5), C22.92(C2×C5⋊D4), C2.12(C2×C23.D5), (C2×C4).148(C5⋊D4), C10.117(C2×C22⋊C4), (C2×C10).162(C4○D4), (C22×C10).141(C2×C4), (C2×C10).298(C22×C4), SmallGroup(320,848)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C24.19D10
C1C5C10C2×C10C22×C10C22×Dic5C2×C4×Dic5 — C24.19D10
C5C2×C10 — C24.19D10
C1C23C22×D4

Generators and relations for C24.19D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=d, f2=db=bd, ab=ba, ac=ca, eae-1=ad=da, faf-1=acd, bc=cb, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e9 >

Subgroups: 766 in 258 conjugacy classes, 91 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22×D4, C2×Dic5, C2×Dic5, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C24.3C22, C4×Dic5, C4⋊Dic5, C23.D5, C22×Dic5, C22×C20, D4×C10, D4×C10, C23×C10, C2×C4×Dic5, C2×C4⋊Dic5, C2×C23.D5, D4×C2×C10, C24.19D10
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, C4○D4, Dic5, D10, C2×C22⋊C4, C4×D4, C4⋊D4, C4.4D4, C41D4, C2×Dic5, C5⋊D4, C22×D5, C24.3C22, C23.D5, D4×D5, D42D5, C22×Dic5, C2×C5⋊D4, D4×Dic5, C20.17D4, C202D4, C20⋊D4, C2×C23.D5, C24.19D10

Smallest permutation representation of C24.19D10
On 160 points
Generators in S160
(1 16)(2 7)(3 18)(4 9)(5 20)(6 11)(8 13)(10 15)(12 17)(14 19)(21 54)(22 45)(23 56)(24 47)(25 58)(26 49)(27 60)(28 51)(29 42)(30 53)(31 44)(32 55)(33 46)(34 57)(35 48)(36 59)(37 50)(38 41)(39 52)(40 43)(61 66)(62 77)(63 68)(64 79)(65 70)(67 72)(69 74)(71 76)(73 78)(75 80)(81 96)(82 87)(83 98)(84 89)(85 100)(86 91)(88 93)(90 95)(92 97)(94 99)(101 106)(102 117)(103 108)(104 119)(105 110)(107 112)(109 114)(111 116)(113 118)(115 120)(121 147)(122 158)(123 149)(124 160)(125 151)(126 142)(127 153)(128 144)(129 155)(130 146)(131 157)(132 148)(133 159)(134 150)(135 141)(136 152)(137 143)(138 154)(139 145)(140 156)
(1 83)(2 84)(3 85)(4 86)(5 87)(6 88)(7 89)(8 90)(9 91)(10 92)(11 93)(12 94)(13 95)(14 96)(15 97)(16 98)(17 99)(18 100)(19 81)(20 82)(21 127)(22 128)(23 129)(24 130)(25 131)(26 132)(27 133)(28 134)(29 135)(30 136)(31 137)(32 138)(33 139)(34 140)(35 121)(36 122)(37 123)(38 124)(39 125)(40 126)(41 160)(42 141)(43 142)(44 143)(45 144)(46 145)(47 146)(48 147)(49 148)(50 149)(51 150)(52 151)(53 152)(54 153)(55 154)(56 155)(57 156)(58 157)(59 158)(60 159)(61 117)(62 118)(63 119)(64 120)(65 101)(66 102)(67 103)(68 104)(69 105)(70 106)(71 107)(72 108)(73 109)(74 110)(75 111)(76 112)(77 113)(78 114)(79 115)(80 116)
(1 104)(2 105)(3 106)(4 107)(5 108)(6 109)(7 110)(8 111)(9 112)(10 113)(11 114)(12 115)(13 116)(14 117)(15 118)(16 119)(17 120)(18 101)(19 102)(20 103)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(61 96)(62 97)(63 98)(64 99)(65 100)(66 81)(67 82)(68 83)(69 84)(70 85)(71 86)(72 87)(73 88)(74 89)(75 90)(76 91)(77 92)(78 93)(79 94)(80 95)(121 142)(122 143)(123 144)(124 145)(125 146)(126 147)(127 148)(128 149)(129 150)(130 151)(131 152)(132 153)(133 154)(134 155)(135 156)(136 157)(137 158)(138 159)(139 160)(140 141)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 47 93 156)(2 56 94 145)(3 45 95 154)(4 54 96 143)(5 43 97 152)(6 52 98 141)(7 41 99 150)(8 50 100 159)(9 59 81 148)(10 48 82 157)(11 57 83 146)(12 46 84 155)(13 55 85 144)(14 44 86 153)(15 53 87 142)(16 42 88 151)(17 51 89 160)(18 60 90 149)(19 49 91 158)(20 58 92 147)(21 76 137 102)(22 65 138 111)(23 74 139 120)(24 63 140 109)(25 72 121 118)(26 61 122 107)(27 70 123 116)(28 79 124 105)(29 68 125 114)(30 77 126 103)(31 66 127 112)(32 75 128 101)(33 64 129 110)(34 73 130 119)(35 62 131 108)(36 71 132 117)(37 80 133 106)(38 69 134 115)(39 78 135 104)(40 67 136 113)

G:=sub<Sym(160)| (1,16)(2,7)(3,18)(4,9)(5,20)(6,11)(8,13)(10,15)(12,17)(14,19)(21,54)(22,45)(23,56)(24,47)(25,58)(26,49)(27,60)(28,51)(29,42)(30,53)(31,44)(32,55)(33,46)(34,57)(35,48)(36,59)(37,50)(38,41)(39,52)(40,43)(61,66)(62,77)(63,68)(64,79)(65,70)(67,72)(69,74)(71,76)(73,78)(75,80)(81,96)(82,87)(83,98)(84,89)(85,100)(86,91)(88,93)(90,95)(92,97)(94,99)(101,106)(102,117)(103,108)(104,119)(105,110)(107,112)(109,114)(111,116)(113,118)(115,120)(121,147)(122,158)(123,149)(124,160)(125,151)(126,142)(127,153)(128,144)(129,155)(130,146)(131,157)(132,148)(133,159)(134,150)(135,141)(136,152)(137,143)(138,154)(139,145)(140,156), (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,91)(10,92)(11,93)(12,94)(13,95)(14,96)(15,97)(16,98)(17,99)(18,100)(19,81)(20,82)(21,127)(22,128)(23,129)(24,130)(25,131)(26,132)(27,133)(28,134)(29,135)(30,136)(31,137)(32,138)(33,139)(34,140)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,160)(42,141)(43,142)(44,143)(45,144)(46,145)(47,146)(48,147)(49,148)(50,149)(51,150)(52,151)(53,152)(54,153)(55,154)(56,155)(57,156)(58,157)(59,158)(60,159)(61,117)(62,118)(63,119)(64,120)(65,101)(66,102)(67,103)(68,104)(69,105)(70,106)(71,107)(72,108)(73,109)(74,110)(75,111)(76,112)(77,113)(78,114)(79,115)(80,116), (1,104)(2,105)(3,106)(4,107)(5,108)(6,109)(7,110)(8,111)(9,112)(10,113)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,101)(19,102)(20,103)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(61,96)(62,97)(63,98)(64,99)(65,100)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(121,142)(122,143)(123,144)(124,145)(125,146)(126,147)(127,148)(128,149)(129,150)(130,151)(131,152)(132,153)(133,154)(134,155)(135,156)(136,157)(137,158)(138,159)(139,160)(140,141), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,47,93,156)(2,56,94,145)(3,45,95,154)(4,54,96,143)(5,43,97,152)(6,52,98,141)(7,41,99,150)(8,50,100,159)(9,59,81,148)(10,48,82,157)(11,57,83,146)(12,46,84,155)(13,55,85,144)(14,44,86,153)(15,53,87,142)(16,42,88,151)(17,51,89,160)(18,60,90,149)(19,49,91,158)(20,58,92,147)(21,76,137,102)(22,65,138,111)(23,74,139,120)(24,63,140,109)(25,72,121,118)(26,61,122,107)(27,70,123,116)(28,79,124,105)(29,68,125,114)(30,77,126,103)(31,66,127,112)(32,75,128,101)(33,64,129,110)(34,73,130,119)(35,62,131,108)(36,71,132,117)(37,80,133,106)(38,69,134,115)(39,78,135,104)(40,67,136,113)>;

G:=Group( (1,16)(2,7)(3,18)(4,9)(5,20)(6,11)(8,13)(10,15)(12,17)(14,19)(21,54)(22,45)(23,56)(24,47)(25,58)(26,49)(27,60)(28,51)(29,42)(30,53)(31,44)(32,55)(33,46)(34,57)(35,48)(36,59)(37,50)(38,41)(39,52)(40,43)(61,66)(62,77)(63,68)(64,79)(65,70)(67,72)(69,74)(71,76)(73,78)(75,80)(81,96)(82,87)(83,98)(84,89)(85,100)(86,91)(88,93)(90,95)(92,97)(94,99)(101,106)(102,117)(103,108)(104,119)(105,110)(107,112)(109,114)(111,116)(113,118)(115,120)(121,147)(122,158)(123,149)(124,160)(125,151)(126,142)(127,153)(128,144)(129,155)(130,146)(131,157)(132,148)(133,159)(134,150)(135,141)(136,152)(137,143)(138,154)(139,145)(140,156), (1,83)(2,84)(3,85)(4,86)(5,87)(6,88)(7,89)(8,90)(9,91)(10,92)(11,93)(12,94)(13,95)(14,96)(15,97)(16,98)(17,99)(18,100)(19,81)(20,82)(21,127)(22,128)(23,129)(24,130)(25,131)(26,132)(27,133)(28,134)(29,135)(30,136)(31,137)(32,138)(33,139)(34,140)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,160)(42,141)(43,142)(44,143)(45,144)(46,145)(47,146)(48,147)(49,148)(50,149)(51,150)(52,151)(53,152)(54,153)(55,154)(56,155)(57,156)(58,157)(59,158)(60,159)(61,117)(62,118)(63,119)(64,120)(65,101)(66,102)(67,103)(68,104)(69,105)(70,106)(71,107)(72,108)(73,109)(74,110)(75,111)(76,112)(77,113)(78,114)(79,115)(80,116), (1,104)(2,105)(3,106)(4,107)(5,108)(6,109)(7,110)(8,111)(9,112)(10,113)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,101)(19,102)(20,103)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(61,96)(62,97)(63,98)(64,99)(65,100)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(121,142)(122,143)(123,144)(124,145)(125,146)(126,147)(127,148)(128,149)(129,150)(130,151)(131,152)(132,153)(133,154)(134,155)(135,156)(136,157)(137,158)(138,159)(139,160)(140,141), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,47,93,156)(2,56,94,145)(3,45,95,154)(4,54,96,143)(5,43,97,152)(6,52,98,141)(7,41,99,150)(8,50,100,159)(9,59,81,148)(10,48,82,157)(11,57,83,146)(12,46,84,155)(13,55,85,144)(14,44,86,153)(15,53,87,142)(16,42,88,151)(17,51,89,160)(18,60,90,149)(19,49,91,158)(20,58,92,147)(21,76,137,102)(22,65,138,111)(23,74,139,120)(24,63,140,109)(25,72,121,118)(26,61,122,107)(27,70,123,116)(28,79,124,105)(29,68,125,114)(30,77,126,103)(31,66,127,112)(32,75,128,101)(33,64,129,110)(34,73,130,119)(35,62,131,108)(36,71,132,117)(37,80,133,106)(38,69,134,115)(39,78,135,104)(40,67,136,113) );

G=PermutationGroup([[(1,16),(2,7),(3,18),(4,9),(5,20),(6,11),(8,13),(10,15),(12,17),(14,19),(21,54),(22,45),(23,56),(24,47),(25,58),(26,49),(27,60),(28,51),(29,42),(30,53),(31,44),(32,55),(33,46),(34,57),(35,48),(36,59),(37,50),(38,41),(39,52),(40,43),(61,66),(62,77),(63,68),(64,79),(65,70),(67,72),(69,74),(71,76),(73,78),(75,80),(81,96),(82,87),(83,98),(84,89),(85,100),(86,91),(88,93),(90,95),(92,97),(94,99),(101,106),(102,117),(103,108),(104,119),(105,110),(107,112),(109,114),(111,116),(113,118),(115,120),(121,147),(122,158),(123,149),(124,160),(125,151),(126,142),(127,153),(128,144),(129,155),(130,146),(131,157),(132,148),(133,159),(134,150),(135,141),(136,152),(137,143),(138,154),(139,145),(140,156)], [(1,83),(2,84),(3,85),(4,86),(5,87),(6,88),(7,89),(8,90),(9,91),(10,92),(11,93),(12,94),(13,95),(14,96),(15,97),(16,98),(17,99),(18,100),(19,81),(20,82),(21,127),(22,128),(23,129),(24,130),(25,131),(26,132),(27,133),(28,134),(29,135),(30,136),(31,137),(32,138),(33,139),(34,140),(35,121),(36,122),(37,123),(38,124),(39,125),(40,126),(41,160),(42,141),(43,142),(44,143),(45,144),(46,145),(47,146),(48,147),(49,148),(50,149),(51,150),(52,151),(53,152),(54,153),(55,154),(56,155),(57,156),(58,157),(59,158),(60,159),(61,117),(62,118),(63,119),(64,120),(65,101),(66,102),(67,103),(68,104),(69,105),(70,106),(71,107),(72,108),(73,109),(74,110),(75,111),(76,112),(77,113),(78,114),(79,115),(80,116)], [(1,104),(2,105),(3,106),(4,107),(5,108),(6,109),(7,110),(8,111),(9,112),(10,113),(11,114),(12,115),(13,116),(14,117),(15,118),(16,119),(17,120),(18,101),(19,102),(20,103),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(61,96),(62,97),(63,98),(64,99),(65,100),(66,81),(67,82),(68,83),(69,84),(70,85),(71,86),(72,87),(73,88),(74,89),(75,90),(76,91),(77,92),(78,93),(79,94),(80,95),(121,142),(122,143),(123,144),(124,145),(125,146),(126,147),(127,148),(128,149),(129,150),(130,151),(131,152),(132,153),(133,154),(134,155),(135,156),(136,157),(137,158),(138,159),(139,160),(140,141)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,47,93,156),(2,56,94,145),(3,45,95,154),(4,54,96,143),(5,43,97,152),(6,52,98,141),(7,41,99,150),(8,50,100,159),(9,59,81,148),(10,48,82,157),(11,57,83,146),(12,46,84,155),(13,55,85,144),(14,44,86,153),(15,53,87,142),(16,42,88,151),(17,51,89,160),(18,60,90,149),(19,49,91,158),(20,58,92,147),(21,76,137,102),(22,65,138,111),(23,74,139,120),(24,63,140,109),(25,72,121,118),(26,61,122,107),(27,70,123,116),(28,79,124,105),(29,68,125,114),(30,77,126,103),(31,66,127,112),(32,75,128,101),(33,64,129,110),(34,73,130,119),(35,62,131,108),(36,71,132,117),(37,80,133,106),(38,69,134,115),(39,78,135,104),(40,67,136,113)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4L4M4N4O4P5A5B10A···10N10O···10AD20A···20H
order12···2222244444···444445510···1010···1020···20
size11···14444222210···1020202020222···24···44···4

68 irreducible representations

dim1111112222222244
type+++++++++-++-
imageC1C2C2C2C2C4D4D4D5C4○D4D10Dic5D10C5⋊D4D4×D5D42D5
kernelC24.19D10C2×C4×Dic5C2×C4⋊Dic5C2×C23.D5D4×C2×C10D4×C10C2×Dic5C2×C20C22×D4C2×C10C22×C4C2×D4C24C2×C4C22C22
# reps11141844242841644

Matrix representation of C24.19D10 in GL6(𝔽41)

100000
010000
000100
001000
000010
0000940
,
4000000
0400000
001000
000100
0000400
0000040
,
100000
010000
0040000
0004000
0000400
0000040
,
100000
010000
0040000
0004000
000010
000001
,
670000
3500000
000100
0040000
000010
000001
,
2180000
2390000
009000
000900
0000118
0000940

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,9,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[6,35,0,0,0,0,7,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,2,0,0,0,0,18,39,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,9,0,0,0,0,18,40] >;

C24.19D10 in GAP, Magma, Sage, TeX

C_2^4._{19}D_{10}
% in TeX

G:=Group("C2^4.19D10");
// GroupNames label

G:=SmallGroup(320,848);
// by ID

G=gap.SmallGroup(320,848);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,422,387,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=d,f^2=d*b=b*d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^9>;
// generators/relations

׿
×
𝔽